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Abstract—Public blockchains in support of Smart Contracts
(SC), like Ethereum enable everyone to represent scarce, valuable
resources (like cryptocurrencies) as so-called tokens. Token issu-
ing and management was the first blockchain use case. However,
programming languages and runtime systems used in the current
blockchains for their SCs lack a secure and straightforward way
to implement and handle tokens. The unnecessary complexity in
doing so can lead to erroneous implementation of tokens and
applications built on top of these, including the loss or theft of
tokens as it happened. The most known attack was ”TheDAO”
attack which led to the loss” of tokens, valued at that time at
approximately 60 M US Dollar.

A better and secure token representation directly embedded
into a SC runtime and SC programming language could prevent
loss of tokens. Thus this paper presents an approach including
parts of a programming language using it. The core of the model
is to use opaque and substructural data types together with
an on-chain soundness checker to generically represent tokens
securely as values similar to integers and booleans. Opaque data
types enforce that only a designated piece of code can create
values of that type. The substructural data types allow values to
express scarcity by preventing the duplication and elimination of
values. The on-chain soundness checker ensures that the deployed
code does not violate guarantees given by the type system, which
includes opaque and substructural data types.

Keywords—blockchain; smart contracts; programming lan-
guages; type systems; opaque data types; substructural data types;
UTx0 model; account model

I. INTRODUCTION

The concept of a Smart Contract (SC) was first presented
in [30], but became practically viable with the invention of
blockchains [26]. SC-enabled blockchains like Ethereum [15],
[33] made them easy to use, especially, different concepts
of distributed and untrusted stakeholder interactions, which
had been unpractical before. One of these concepts is a
tokenization, which enables the representation of existing or
new properties, assets, and other scarce resources digitally on
a blockchain. These tokens can be traded or managed by SCs
without the need for an intermediary. The first blockchain
token was the bitcoin token which is freely tradeable on the
Bitcoin blockchain [26]. While the current Bitcoin blockchain
does support scripts to specify under which conditions bitcoin
tokens can be transferred, the Ethereum blockchain introduced
full SCs, which allowed to run Turing-complete programs
on the blockchain. The virtual machine of Etherum (EVM)
executes SCs and is powerful enough to execute code defining
and managing custom tokens.

With the power to use code to define new tokens and SCs
operating on these tokens, comes the risk of erroneous code
that can undermine the original intention. The fact that SC
programming languages like Solidity [10] do not have features
aimed at providing a secure and robust way to represent and
manage tokens intensifies this. Some blockchains like WAVES
[7] circumvent this problem by allowing participants to define
new tokens without needing to code. That approach makes it
easy to define secure tokens as long as these fit into the model
dictated by the blockchain, however, it cannot be considered
a general approach, since alternative representation can not be
expressed.

Most blockchains with SC capabilities currently use the
account model to store information. This determines an easier
approach to adapt existing programming language concepts to
describe SCs. A second approach is the Unspent transaction
output (UTxO) one, where SCs determine conditions under
which a token can be spent. This approach lacks a path to
provide SC functionality that is powerful enough to introduce
new tokens. Compared to the account model the UTxO model
has inherent benefits like parallel transaction execution and
better privacy guarantees, which may be minimal but in place
[8]. Projects that introduce more powerful SC capabilities into
the UTxO model do this either over a second layer separate
from the primary blockchain [6] or by using a hybrid model
that uses an account model for the SC part and an UTxO model
for the transaction part [28].

Introducing SCs that can define new tokens on a UTxO
blockchain without introducing a second layer or fall back to
an account model is an open problem. Another related problem
is how to represent tokens in a way that they are less prone
to coding errors and easier to handle in an SC programming
language. In this paper, we try to answer the more general
research question on how to represent tokens and other scarce
resources securely over SCs, such as their representation is
independent of the storage and transaction handling model a
blockchain uses and does not require an additional layer.

This paper defines, a new model, termed SATOS for
representing and managing tokens on a blockchain as first-
class values. This makes it easy to represent tokens in a SC
language or virtual machine as they are represented similarly to
other values like integers or booleans. Furthermore, the model
is agnostic to the storage model and transaction handling meth-
ods. This approach can be embedded into account-based and
UTxO-based blockchains. SATOS makes it easier to design
and optimize the storage and transaction layer independent
of the SC execution layer. The programming language called
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Mandala, currently under development, is used to provide
examples visualizing the major concepts. While Mandala will
address other relevant factors of SCs that can lead to vulner-
abilities like access control management and error handling,
this paper will focus on SATOS and its approach to managing
tokens and other scarce resources. The best-known attack on
a SC termed “TheDAO” attack could have been prevented in
the SATOS model, because tokens are first class values and do
not require separate balance tracking (which was out of sync
in "TheDAO” attack) [31]

II. TOKEN REPRESENTATION MODELS

Two approaches exist today to provide SCs. Bitcoin uses a
computationally less powerful approach, where the SC consists
of code representing a partial script attached to tokens [13]. To
spend tokens a transaction has to provide the missing parts of
the script so that when executed it evaluates to true. All tokens
spent in a transaction can be used to generate new tokens with
different SCs attached. The sum of the tokens generated must
be the same as the sum of the tokens spent. With this approach,
the token scarcity and functionality is independent of the SCs.
Thus new tokens can not be introduced by them. This has
the UTxO model as its foundation: where each transaction
produces outputs and each of them can be used as input to
exactly one future transaction.

The computationally more powerful approach introduced
by Ethereum creates a new storage region called an account on
the blockchain (storing the contract state) for each SC instance
[15]. The code associated with the SC can store and read
arbitrary values to and from that region but cannot directly
access the storage region of other SC instances. However,
interaction is possible by executing the code associated with
that instance which can interact with its storage and provides
a result to the calling instance. Thus tokens can be expressed
by a SC storing who owns how many tokens and providing
functions to transfer tokens to another entity after the owner
authorized the transfer. With this approach, a token’s scarcity is
determined by the code in the SC guarding its storage region.
This SC model uses the account model as its foundation,
where each entity (be it a SC or a account controlled over
a asymmetric key pair) has an identity (called an address) on
the blockchain. Tokens and other values can be associated with
these identities to express ownership.

The contract storage region approach often leads to mono-
lithic code that manages storage regions, as every allowed
state transition in that storage region has to be expressed in
a single SC. The monolithic SC has to cover all cases from
the beginning as SC code deployed on a blockchain can no
longer be modified [33]. In turn, it is hard to apply secure
coding practices like abstraction, code reuse, or separation
of concerns. Attempts to use these practices had lead to
unexpected flaws, which lead to the loss of large amounts of
valuable tokens [29]. Defining new tokens and corresponding
functionality is prone to errors that can lead to financial loss.
Associated risks on defining custom tokens are tackled today
by code reviews, bug bounties, and test runs on test nets. These
countermeasures are resource-and time-intensive and provide
a substantial barrier for defining tokens and writing contracts
operating on these tokens.

In contrast to existing approaches, in the SATOS model,
the scarcity and functionality of new tokens can be enforced
independently from the storage technique and location. A
SC can introduce new value types and associated functions
consuming and creating values of that type. Functions not
associated with those types can still receive and return those
values, but can not interact with them except over associated
functions. This concept is called opaque data types and is
frequently used to implement the more general concept of
abstract data types [24].

Opaque data types can enforce the functionality of a
token by restricting manipulations, but they fail to enforce
the scarcity of a token. To address this shortcoming, type
declarations restrict the number of usages of values of that
type. A token type can specify that values must be used
at most once and, thus, preventing a function from making
a copy of that value. This concept is called an affine type
and is part of a broader concept named substructural data
types [32]. For representing tokens, affine types would be
sufficient but by supporting other substructural data types
like linear (must be used exactly once) and relevant (must
be used at least once), further non-token related use cases
are expressed more elegantly. SATOS is independent of the
concrete storage concept used by the blockchain as long as
a concrete implementation does enforce guarantees given by
opaque and substructural data types. Figure 1 shows for values
of a substructural as well as non-substructural (regular) type
what happens between their creation and consumption. The
creation and consumption can only happen inside a function
associated with that type. Between the create and consume
operation an arbitrary amount of time can pass.

Opaque and substructural data types can be enforced during
compilation of a program or at runtime. Approaches that
enforces these rules at runtime do impose a performance
overhead during the execution, since the types of values have
to be passed around (higher memory usage) and have to be
enforced for each operation (higher CPU usage). Checking
them at compile time reduces the total costs, since checks
occur only once. Checking types only at compiletime is not
sufficient for public blockchains, since this does not prevent
an attacker from deploying code that was compiled by a
manipulated compiler, thus, not producing sound programs.
Using a respective compiler would allow an attacker to deploy
code that could freely create and duplicate values, even if
opaque and substructural data types would not allow for it.
To prevent this problem, SATOS leverages a technique, where
the soundness of the code is checked during the deployment
to the blockchain and non-sound code is refused [23]. These
soundness checks have to be performed only once and are
part of the blockchain validation rules. Consequently, SATOS
can enforce any static guarantee, not only for opaque and
substructural data types. A particular embedding of SATOS
into a blockchain does still require runtime checks at the start
of a transaction’s execution, because input values have an
origin that is out of reach of the soundness checker running
during code deployment. These inputs could come from the
blockchain’s storage or may be a part of the transaction itself.
The checks during deployment help developers to provide
correct code but do not free them from the responsibility of
providing correct code.
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Figure 1. Lifetime of values with opaque and substructural data types

III. RELATED WORK In permissioned blockchains the right to deploy SCs can be
limited to a trusted entity, be it an individual, company, or
a consortium with a governance process. In contrast, SATOS
addresses and provides a solution to the runtime enforcement
problem, which allows opaque and substructural data types as
parameters and returns in functions called by untrusted SCs.
Thus, SATOS is well suited for public blockchains, since no
trust assumptions are necessary and anybody can deploy SCs.

There is a limited amount of research and projects that are
related to SATOS. On the side of SC programming languages
that use similar concepts as SATOS there is Obsidian [16].
Other non-SC programming languages that use opaque or
substructural types exist, like Rust [5], but they do not use
the type system to represent scarce ownable resources as these
concepts are not of importance outside of SC’s. In respect to
improving the capabilities of UTxO based SC representations,
there are a few non-academic projects [18], [27], [28]. B. Language Runtimes

Techniques to efficiently enforce soundness of code loaded

A. Obsidian into a runtime are a well-researched topic as most modern
) o ) virtual machines like WASM [20] and the JVM [2] do this.

The SC programming language Obsidian [16] is under  These virtual machines operate on a byte code that can be
development, where linear types are used as part of the  checked efficiently, often in a single pass. The guarantees
representation of tokens. Obsidian focuses on the interaction of given by the byte code are often less then what a higher
users with language features (user-centric design) and less on Jeve] language that compiles to it guarantees. Modern virtual
the integration of a language into blockchains. Obsidian applies  machines check soundness constraints like type safety, function

an object-oriented paradigm combined with typestates [12]  yigibility and reference integrity (checking that a referred
where every object represents a state machine. The compiler  yariable or function exist) amongst others.

tracks the state of an object statically. One reference to the

object is a “owned reference” which has a linear type to ensure In a non-blockchain execution environment, these virtual
that there are no aliases (other references pointing to the same ~ machines have to check the soundness each time they load
object), enabling the representation of owned tokens. Checking ~ code because it may have been modified on the disk since it
the soundness of a program is performed by the classical was checked the last time. SATOS, on the other hand, runs on
approach, while these guarantees are enforced during off-chain a blockchain which can guarantee that the code is not modified
compilation. This approach is sound in systems where all after deployment and thus it suffices to check the soundness
interacting SCs are deployed by entities trusting each other to ~ once when the code is deployed.

use only the Obsidian compiler. Functions can only receive and

return owned values from or to trusteq callers as an untruste?d C. UTxO SC Capabilities

caller may not enforce guarantees given by the ownership

model. Obsidian is best suited for permissioned blockchains Multiple non-academic projects [18], [27], [28] want
like Hyperledger Fabric [1] (current compilation target [17]). to improve SC capabilities available to public UTxO-based
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blockchains. Currently three prominent approaches exist to
improve SC capabilities in the UTxO model:

1) Improving the expressiveness of spending conditions
without addressing their inherent inability to intro-
duce new tokens [27].

Providing hybrid models that use the UTxO model
for transactions and the account model for SCs and
provide interaction capabilities between them [18].
Adding specific mechanisms for defining new tokens
with a fixed behavior [28].

2)

3)

The approaches 1. and 3. are less expressive than what an
account-based SC platform can express. The hybrid model 2.
has the limitation that an UTxO transaction interacting with an
SC has to follow the restrictions from both models, eliminating
advantages that are exclusive to one of these two models. In
contrast, SATOS can describe the introduction of new tokens
in an UTxO model without limiting the functionality of the
token or eliminating the benefits of the UTxO model.

D. Orthogonal Approaches

Providing security oriented programming languages with
a well defined operative semantic is just one approach to
reduce bugs and eliminate attack vectors in SCs. Many other
orthogonal approaches can be used to achieve the same goal
and even approaches not specifically targeting SCs can often
be applied to some degree in a blockchain environment.
Orthogonal approaches include but are not limited to: Formal
verification, code review, bug bounties and testing. Some
noteworthy approaches that have SCs in mind are: Oyente [25],
which provides a static analysis framework to find vulnerabil-
ities in SCs, the Hydra Framework [14] which automates bug
bounty payouts and the KEVM [21] which provides a formal
specification of the EVM that allows to do formal verification
on SCs. This list is not complete as the field is vast, and there
is much impact-full research.

IV. TOKEN IMPLEMENTATION WITH OPAQUE AND
SUBSTRUCTURAL DATA TYPES

This papers uses Mandala, an under development SC
programming language to show how SATOS is used in practice
to create tokens and manage them. SATOS unrelated Mandala
concepts are required when implementing tokens as opaque
and substructural data types do not work in isolation. Mandala
is a statically typed domain-specific smart contract language
based on side-effect free statically dispatched functions and
without recursion or loops. These properties make Mandala
a not Turing complete programming language, but other lan-
guages based on SATOS can be Turing complete. This paper
will not provide an exhaustive description of Mandala but
instead, focus on how SATOS is used in Mandala to represent
tokens.

SATOS requires that there is a way to associate functions to
types with the purpose to ensure that only these functions can
construct or deconstruct values of the type. Mandala achieves
this over its module component which groups together a set
of functions and a set of types. Simultaneously modules are
the smallest deployment unit and provide a namespace for its
types and functions allowing other modules to refer to them.

Mandala’s data types are algebraic data types (ADT), and
Mandala has a parametric polymorphic type system. ADT’s
are used in functional languages like Haskell [22] and are
composite types, that can contain other values. An ADT is an
immutable data type where a created value cannot be modified
after construction. Parametric polymorphism allows data types
and functions to take types as parameters (generic functions
and generic data types). Values constructed from the same data
types but with different type parameters have a different type
and are assignment incompatible.

A sound interaction between, substructural data types,
and parameter polymorphism with ADT’s requires them to
declare a substructural category which can be linear, affine,
relevant or regular where regular indicates that the ADT is
not substructural and the others are the substructural options.
These categories are hierarchical concerning the guarantees
they provide. A linear ADT provides stronger guarantees as an
affine or relevant ADT, and these provide stronger guarantees
as a regular ADT. Types have a substructural category as well
which is the weakest category that is at least as strong as all the
categories of the applied type parameters and the category of
the ADT declaration. As an example, an affine ADT with one
type parameter instantiated with a relevant or linear type would
have the linear category. Field types in an ADT cannot have a
category with stronger guarantees than the declared category
on the ADT itself. Type parameters of an ADT are treated as
if they have the regular category when used to construct the
types of fields.

Function declarations in Mandala can mark its type pa-
rameters as protected. A caller can only apply types for the
protected type parameters where the corresponding data type
definition is in the same module as the calling function. The
purpose of protected functions is to provide further capabilities
to opaque data types which are needed when defining tokens
as can be seen in the code examples of this section.

Mandala’s syntax is inspired by functional languages and
uses pattern matching for deconstructing values and let bind-
ings for naming results of expressions. There are different
classes of tokens on top of blockchains. The most fundamental
differentiation is between fungible and non-fungible tokens
(For Ethereum specified in ERC-20 [3] and ERC-721 [4]),
which both can be represented in SATOS. The remainder of
this section will focus on fungible token and show all that is
necessary to provide and manage them including ownership
management and minting. Fungible tokens have the character-
istic that all tokens are interchangeable, and it is not important
which specific tokens somebody owns.

A. Token Definition

The storage agnostic nature of SATOS allows a high level
of abstraction, reusability and separation of concerns, allowing
a generic token description that can be reused to represent
different tokens. Functionality that in other smart contract
languages like solidity [10] would need to be part of the
token description can in Mandala be part of separate modules.
Listing 1 shows a reusable fungible token definition with a
minimal set of functionalities. In languages based on SATOS
such a module can be part of the standard library to set a
standard allowing different applications to speak a common
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language where fungible tokens are concerned. In ethereum
and solidity a standard called ERC-20 had to be created to
enable a common representation of fungible tokens.

On line 2 in Listing 1 an affine and opaque ADT named
Token, representing the token type is declared. The value of
that type tracks the number of fungible tokens it represents as
an unsigned 128bit integer. The type parameter T represents
the particular token and makes the ADT reusable. As an
example, the types Token[Btc] and Token[Eth] are different
types representing different tokens. Over the mint function on
line 4 new tokens can be generated. The type parameter of mint
is protected which ensures that only the module defining the
type applied to T can call it, preventing unauthorized minting.
The functions merge and split, on the lines 9 and 17, allow
to rearrange the grouping of token quantities. These functions
have the keyword risky indicating that they can produce an
error which is the case because Mandala produces an error on
an integer over-or underflow.

Listing 1. Generic Token Module

Token {
affine Token[T] (ul28)
protected[T]
mint [T] (a:ul28) {

return Token[T] (a)

© ® N U R WD -

public risky
split [T] (Token[T] (a), split:ul28) {
return ( 11
Token[T] (a-split),
Token[T] (split)

public risky

merge [T] (Token[T] (al), Token[T] (a2)) {
return Token[T] (al+a2)

} 20

public
balance[T] (Token[T] (val)) {
return (val, Token[T] (val))

} 26

The token representation from Listing 1 has multiple benefits
compared to the previous approaches that do not use SATOS
for token representation.

1)  Two different tokens cannot be assigned to each other,
preventing accidental mix-ups like sending ETH to-
kens when BTC tokens where expected

Tokens can be passed around like any other value
without the need of delegating this to another smart
contract

Tokens are generic and can be used without knowing

details about the token

2)

3)

4)  Function signatures do explicitly state which tokens
they expect and which tokens they return
5) The Token implementation can be reused instead of

being re-implemented for each new token

B. Blockchain Integration

In SATOS values are agnostic to the blockchain storage
and do not care where and how they are stored. A blockchain
using SATOS has to provide one or more modules containing
ADTs that capture the values to store and the necessary meta
information, as well as the functions that operate on the values
of these ADTs. Listing 2 shows a generic example for a
blockchain using the UTxO model. In the presented example
Mandala can be used to express the spending condition as well
as expressing the transaction validity rules. This representation
is not Bitcoin specific and it is enough to understand the UTxO
principles to apply it.

Listing 2. UTxO Module
UTxO { 1
top linear UTxO[T] (T) 2
3
public create[T] (t:T) { 4
return UTxO[T] (t) 5
} 6
7
protected[T] 8
spend[T] (UTxO[T] (val)) { 9
return val 10
} 11
} 12

The UTxO data types on line 2 in Listing 2 is marked with
the top keyword indicating that it is not allowed to use values
of that ADT as constructor arguments. This is necessary to
prevent an attacker from taking an UTxO that he is not able
to spend and embed it in an UTxO that only he can spend.
To limit how a UTxO can be spent the generic parameter T of
the spend function on line 10 is protected allowing the module
defining T to enforce the spending condition.

Listing 3. account Module

account {

1
top linear AccountEntry [T] ( 2
data20, dataz20, T 3
) 4
5
public create[T] ( 6
id:data20, key:data20, t:T 7
) { 8
return AccountEntry[T] (id, key, t) 9
} 10
11
protected[T] 12
spend[T] (AccountEntry[T] (id, key,t)) { 13
return (id,key,t) 14
} 15
} 16
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The account version in Listing 3 has a similar structure
as the UTxO version, but the AccountEntry type on line 2
in Listing 3 additionally captures the location where to store
the value. In the example, the storage location is represented
as two 20 Byte (output size of a 160bit hash function) long
values representing an account and a key pointing to a slot in
the accounts storage region.

A blockchain that uses SATOS in junction with a SC
language like Mandala has to provide a way for their trans-
actions to call functions in modules. Beside the name of
the function(s) that a transaction calls the parameters have
to be specified which can be primitives (like integers) and
the storage-specific types of the blockchain (like UTxOs). An
advanced implementation will further allow calling multiple
functions where the return values of one function are used
as the parameter of another and in that case these values can
have any type. The most elaborated integration can contain
interpreted Mandala code extended by some primitives to
exchange values with the blockchains storage. Independent on
how the integration looks like a SC language using SATOS
needs to provide signatures for its functions and types with
enough information such that the transaction handler can make
the necessary checks to enforce soundness when calling a
function.

As functions in SATOS can not directly interact with
the blockchains storage, they must be stateless, and only
the blockchain, calling a function can load or store values.
The data types provided by the blockchain can influence the
functionality used to instantiate and transfer tokens. The UTxO
or AccountEntry data types are not enough for many use cases.
One data type that most blockchain integrations will provide
is a top regular data type which contains different information
about the current state like the block number or the executed
transactions hash. Later examples assume that a such a data
type called Context is provided. A value of the Context type
never lives longer as the current transaction execution because
the top keyword prevents its usage in an ADT that could be
persisted.

C. Spending Conditions

Over the protected mint function from Listing 1 scarcity
of a token can be controlled. For a token to develop value it is
not enough to be scarce, a notion of ownership is required
as well. Blockchains achieve this with the help of public
key cryptography. Listing 4 extends the UTxO example with
the implementation of a spending condition using public key
cryptography. It is assumed that an ECDSA module is provided
by the blockchain (similar to how Context is provided), that
contains the primitives needed to verify ECDSA signatures.

Ownership is represented over the Lock ADT on Line 4 in
Listing 4 which contains a public key (the owner) and a value
(the property). While everyone can generate an UTxO that
contains an owned value over the lock function on Line 6, the
unlock function on Line 10 ensures that spending the value
requires a valid signature over the transaction hash created by
the owner. If the signature is not correct the require statement
on line 18 will produce an error. The unlock function is the
only way to retrieve the property as only functions from the
SigLock module can call the protected spend function of a

UTxO containing their Lock.

Listing 4. ECDSA based ownership

ECDSA. *;

Context.x

SigLock {
affine Lock [T] (Pk, T)

UTxO0. *

{

public lock[T] (pk:Pk, v:T)
v))

return UTxO[Lock[T]] (Lock[T] (pk,

O ® NN U R W N —

public risky unlock [T] (
ctx:Context, 11
uxto:UTxO[Lock[T]],
sig:Sig

) {
let lock = spend[Lock[T]] (UTxO) 15
let Lock[T] (pk,v) = lock
let txtHash = getTxtHash (ctx)
require verify (pk,txtHash,siqg)
return v

D. Creating a Token

One core part when creating a new kind of tokens are the
rules that dictate how new tokens are minted. This part is
different for each specific token, whereas the other presented
modules can be reused. Listing 5 shows how a simple initial
coin offering(ICO) which allows buying new tokens over
another token during a time window of 1000 blocks with an
exchange rate of 1.

Listing 5. Token offered over ICO
ECDSA. *; UTxO. * 1
Token. *; Context . 2
SigLock.x 3
MyICO { 4
MyToken 5
start:u64 = 1000 6
end:u64 = 2000 7
myPk = createPk (0xe2...5f) 8
9
public risky 10
buy (ctx:Context, pay:Token[Btc]) { 11
let blockNo = getBlockNo (ctx) 12
require blockNo >= start 13
require blockNo < end 14
let (val, pay) = balance (pay) 15
return ( 16
mint [MyToken] (val), 17
lock[Token[Btc]] (myPk, pay) 18
) 19
} 20
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The MyToken ADT on line 5 in Listing 5 has no constructor
and thus cannot be created and is used as type parameter to the
Token type from Listing 1. The buy function on line 10 accepts
BTC (as Token[BTC]) tokens as payment and then mints an
equal amount of MyToken tokens (as Token[MyToken]) on line
17. Tt uses the blockNo from the context to check that the
time window is still open. The payment is sent to a predefined
public key by using the Lock from Listing 4. The buy function
expects plain tokens as payment, and locked tokens first have
to be unlocked before used as a parameter to the buy function.
This approach keeps the ICO generic concerning the ownership
mechanism used to protect the payment. If the used blockchain
can call multiple functions per transaction, then a transaction
can first call an unlock function and then pass the resulting
token to the buy function. In case the blockchain only supports
a call to one function per transaction an integration function
like the one in Listing 6 is necessary to make the example
work.

Listing 6. Buy transaction function
ECDSA. *; UTxO. * 1
Token. x; Context.x* 2
ICOBridge { 3
public risky 4
buy ( 5
pay:UTxO[Lock[Token[Btc]]], 6
ctx:Context, 7
sig:Sig 8
) { 9
let tok = unlock(ctx,pay,siqg) 10
return buy (ctx, tok) 11
} 12
} 13
E. Transferring a Token
Listing 7. Transfer transaction function
ECDSA. *; UTxO. * 1
Token. *; Context.x* 2
TransferBridge { 3
public risky 4
transfer[T] ( 5
ctx:Context, amount:ul28, 6
in:UTxO[Lock [Token[T]1], 7
sig:Sig, payPk:Pk, myPk:Pk, 8
) { 9
let tok = unlock(ctx,in, siqg) 10
let (keep,pay) = split (tok, amount) 11
return ( 12
lock[Token[T]] (payPk, pay), 13
lock [Token[T]] (myPk, keep) 14

} 17

In blockchains that allow calling more than one function and
route returns of one to the parameters of another a token
transfer can be realised without needing additional code. A

token can be transferred by first unlocking the locked inputs
with a signature of the owner than calling split and merge
on the tokens to produce the desired partitioning of output
tokens which are finally locked again with the public keys of
the recipients. If the blockchain does not support the call of
multiple functions then the transfer has to be expressed in a
Mandala function like the one in Listing 7 but this approach
is less flexible as it can only handle a fixed amount of inputs
and outputs.

V. ENFORCING SOUNDNESS

The values for representing tokens are not the only part
needed to make SATOS work. The second essential element is
the code and the its sound execution at runtime. This approach
assumes that the smallest deployment unit is a list of types
and associated functions like the module in Mandala, referring
to such a deployment unit as a module, which is content-
addressable over the hash of its content. When a type or
function depends on a type or function from another module,
it refers to it by the module’s hash and the position/index in
the target module.

An initial and naive design is stateless and stores no
information about the code on the blockchain. Thus, every
transaction has to provide modules containing called functions
and all modules they directly or indirectly depend on. All these
modules have to be checked for soundness. Modules with the
same content, but provided by different transactions represent
the same module. This approach repeats soundness checks for
each transaction and the transaction sizes grows due to all
the code provided. However, it demonstrates that the code
needed to execute a transaction can be reconstructed at any
time as long as the code of the modules needed is available
off-chain. All code-related information stored on the block-
chain determines a performance improvement and provides a
trade-off between bandwidth and CPU cycles against used disk
storage.

A first improvement records hashes of all sound modules
on the blockchain and runs the soundness check only the
first time the code of a module is needed. Transactions still
contain the code of modules. In turn, storing the content of
sound modules in addition to the hash leads to a bandwidth
optimization as transactions only have to include module
hashes but no longer the code. Module content that is stored on
the blockchain can be compressed by removing all information
that is only required for checking the soundness but not for
executing the code. Hybrid variants are possible, where rarely
used modules are removed from the storage and redeployed
again when needed.

Independent of which soundness check results are stored
and which are recomputed, ensuring soundness when code is
deployed is not free and checks have to be executed by every
full node in the blockchain. It is important to note that existing
SC virtual machines like the EVM or WASM based SC virtual
machines [9], [11] have to enforce soundness as well, but
compared with SATOS they need to enforce less constraints.
While the EVM enforces the soundness when code is executed,
WASM based virtual machines do a single pass over the whole
code before it is executed to ensure that it is sound. More
complex soundness checks can still be done efficiently as
modern virtual machines like the JVM have proven.
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The fact that no on-chain state is required for the code
brings the benefit for longtime evolutions of a blockchain: (a)
If the same module is deployed on multiple blockchains or
multiple shards of a single blockchain, they provide precisely
the same functions and types, (b) If two blockchains/shards
have a way to transfer a value from one to the other, then it
can immediately be used at its new place, and (c) this is fully
compatible with computational proof systems [19] which allow
for the generation of a proof that a module is sound and the
blockchain only needs to verify the proof instead of the full
module. Because functions of a language built with SATOS are
side-effect free a computational proof system can be used for
proofing the soundness of modules and for proofing outputs
of an transaction execution.

VI. DISCUSSION

One of the advantages of SATOS is that it enables more
complex SCs in the UTxO model. One of the benefits of the
UTxO model is that it is easy to detect if two transactions are
independent of each other and as a result can be executed in
parallel. If a transaction uses the output of another transaction
as input, then parallel execution is not allowed. In the most
implementation of the account model, it is more complicated to
decide if two transactions are independent of each other as it is
necessary to knwo what state is accessed by each transaction.
SATOS, requires that all state dependencies are made explicit
even when used in combination with an account model and
thus it is easy to decide if two transactions can be executed in
parallel.

Not all SCs can be written in a way such as the transactions
can be executed in parallel. Which categories of SCs can
be represented in a way such as parallel execution becomes
possible will require more research. SATOS immutable values
encourage developers to split their state into smaller pieces,
which has the potential to increase the number of parallel
executable transactions. Parallel execution could further be
improved if the blockchain provides specific types (in addition
to UTxO and AccountEntry, etc.) like atomic accumulators that
are built with efficient concurrent write access in mind.

SATOS introduces a new programming paradigm. SATOS
paradigm is close to the functional programming paradigm as
it shares the focus on immutable datatype and side-effect free
functions. On top of that SATOS introduces the concept of
using opaque and substructural types to represent values that
can represent scarce resources. This paradigm shift implies that
creating programs has to be approached differently when using
SATOS, similar to how writing a program has to be approached
differently in an imperative language compared to a functional
language. This bears the risk that a developer may struggle
with writing complex SCs in Mandala or other SATOS based
languages until they get used to the new paradigm.

The benefits of this paradigm shift is not that Mandala
(and other SATOS based languages) allows to implement SCs
that are not possible in other SC languages but instead allows
to write SCs in a more robust, more reusable and less error-
prone way similar to the benefits that functional program-
ming provided over imperative and procedural programming.
Further SATOS independence on the storage and transaction
execution model of the blockchain allows to create SCs is

blockchains that do not use the account model like UTxO
based blockchains.

VII. CONCLUSIONS

Creating and managing tokens is still the primary use case
for SCs, but SC-enabled blokchains like Ethereum and their
associated virtual machine and programming languages do
only have support for a native cryptocurrency (like ether). New
tokens need to be created and managed by monolithic SCs,
tracking the possessions of each entity interacting with the
token and which provide functionality to owners to transfer
tokens to other entities.

This paper provides the new model termed SATOS, where
tokens can be presented as values that leverage opaque and
substructural data types. In a programming language using
SATOS, tokens are as easy to handle as other native data
types like integers. No complex additional logic is needed
to represent them. The focus on abstraction and reusability
provided by SATOS allows tokens to be defined generically
and securely once. They are reusable by each concrete cus-
tom token. SATOS is agnostic on how a blockchain handles
transactions and stores values.

For evaluating SATOS an analysis of examples is used.
A series of examples written in the programming language
Mandala applying SATOS has shown that the concepts of
opaque and substructural data types are capable of defining
tokens, storing them on an UTxO-or account-based blockchain,
and managing their ownership with asymmetric cryptography.
The process to deploy, manage, and host code for a virtual
machine supporting SATOS is defined in a flexible way such
that additional concepts, like sharding, sidechains, and stateless
blockchains can be leveraged.

SATOS is the first approach that enables SCs that can
define and manage new tokens and other assets in a pure
UTxO model. Other related work either add an account model
on top of the UTxO model or use a non-general approach like
requiring new tokens or assets to select from a fixed predefined
set of classes which are then treated specially during runtime.

Compared to the SC programming language Obsidian
which use similar concepts to represent tokens as native data
types, SATOS has the advantage that it is compatible with
a public blockchain where different untrusted entities deploy
SCs. In such an environment Obsidian SCs would not be able
to exchange tokens with other untrusted SCs securely.
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